Enhanced c-Fms/M-CSF receptor signaling and wound-healing process in bone marrow-derived macrophages of signal-transducing adaptor protein-2 (STAP-2) deficient mice.

نویسندگان

  • Osamu Ikeda
  • Yuichi Sekine
  • Ryuta Muromoto
  • Norihiko Ohbayashi
  • Akihiko Yoshimura
  • Tadashi Matsuda
چکیده

Signal-transducing adaptor protein-2 (STAP-2) is a recently identified adaptor protein as a c-Fms/M-CSF receptor-interacting protein and constitutively expressed in macrophages. In our previous study, we examined the role of STAP-2 in the c-Fms/M-CSF receptor signaling using a murine macrophage tumor cells line, Raw264.7. Overexpression of STAP-2 in Raw264.7 cells markedly suppressed M-CSF-induced activation of extracellular signal regulated kinase and Akt. In addition, Raw264.7 overexpressing STAP-2 affected cell migration in wound-healing process. These results suggest that STAP-2 deficiency influences endogenous c-Fms/M-CSF receptor signaling. Here we show that loss of STAP-2 expression in knockout mouse macrophages results in marked enhancement of the c-Fms/M-CSF receptor signaling and wound-healing process. We therefore propose that STAP-2 acts as an endogenous regulator in normal macrophages functions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Signal-transducing adaptor protein-2 modulates Fas-mediated T cell apoptosis by interacting with caspase-8.

We found that an adaptor protein, signal-transducing adaptor protein (STAP)-2, is a new member of the Fas-death-inducing signaling complex and participates in activation-induced cell death in T cells. STAP-2 enhanced Fas-mediated apoptosis and caspase-8 aggregation and activation in Jurkat T cells. Importantly, STAP-2 directly interacted with caspase-8 and Fas, resulting in enhanced interaction...

متن کامل

Modulation of TLR4 signaling by a novel adaptor protein signal-transducing adaptor protein-2 in macrophages.

Signal-transducing adaptor protein-2 (STAP-2) is a recently identified adaptor protein that contains pleckstrin and Src homology 2-like domains as well as a YXXQ motif in its C-terminal region. Our previous studies have demonstrated that STAP-2 binds to STAT3 and STAT5, and regulates their signaling pathways. In the present study, STAP-2 was found to positively regulate LPS/TLR4-mediated signal...

متن کامل

STAP-2 negatively regulates both canonical and noncanonical NF-kappaB activation induced by Epstein-Barr virus-derived latent membrane protein 1.

The signal-transducing adaptor protein 2 (STAP-2) is a recently identified adaptor protein that contains a pleckstrin homology (PH) and Src homology 2 (SH2)-like domains, as well as a proline-rich domain in its C-terminal region. In previous studies, we demonstrated that STAP-2 binds to MyD88 and IKK-alpha or IKK-beta and modulates NF-kappaB signaling in macrophages. In the present study, we fo...

متن کامل

Signal-transducing adaptor protein-2 regulates stromal cell-derived factor-1 alpha-induced chemotaxis in T cells.

Signal-transducing adaptor protein-2 (STAP-2) is a recently identified adaptor protein that contains pleckstrin and Src homology 2-like domains, as well as a YXXQ motif in its C-terminal region. Our previous studies revealed that STAP-2 regulates integrin-mediated T cell adhesion. In the present study, we find that STAP-2 expression affects Jurkat T cell migration after stromal cell-derived fac...

متن کامل

Signal-transducing adaptor protein-2 controls the IgE-mediated, mast cell-mediated anaphylactic responses.

Signal-transducing adaptor protein-2 (STAP-2) is a recently identified adaptor protein that regulates immune and inflammatory responses through interactions with a variety of signaling and transcriptional molecules. In the current study, we clarified the physiological role of STAP-2 in mast cell function, a key mediator of IgE-associated allergic responses. STAP-2 is constitutively expressed in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biological & pharmaceutical bulletin

دوره 31 9  شماره 

صفحات  -

تاریخ انتشار 2008